Analysis of skeletal muscle defects in larval zebrafish by birefringence and touch-evoke escape response assays.

نویسندگان

  • Laura L Smith
  • Alan H Beggs
  • Vandana A Gupta
چکیده

Zebrafish (Danio rerio) have become a particularly effective tool for modeling human diseases affecting skeletal muscle, including muscular dystrophies, congenital myopathies, and disruptions in sarcomeric assembly, due to high genomic and structural conservation with mammals. Muscular disorganization and locomotive impairment can be quickly assessed in the zebrafish over the first few days post-fertilization. Two assays to help characterize skeletal muscle defects in zebrafish are birefringence (structural) and touch-evoked escape response (behavioral). Birefringence is a physical property in which light is rotated as it passes through ordered matter, such as the pseudo-crystalline array of muscle sarcomeres. It is a simple, noninvasive approach to assess muscle integrity in translucent zebrafish larvae early in development. Wild-type zebrafish with highly organized skeletal muscle appear very bright amidst a dark background when visualized between two polarized light filters, whereas muscle mutants have birefringence patterns specific to the primary muscular disorder they model. Zebrafish modeling muscular dystrophies, diseases characterized by myofiber degeneration followed by repeated rounds of regeneration, exhibit degenerative dark patches in skeletal muscle under polarized light. Nondystrophic myopathies are not associated with necrosis or regenerative changes, but result in disorganized myofibers and skeletal muscle weakness. Myopathic zebrafish typically show an overall reduction in birefringence, reflecting the disorganization of sarcomeres. The touch-evoked escape assay involves observing an embryo's swimming behavior in response to tactile stimulation. In comparison to wild-type larvae, mutant larvae frequently display a weak escape contraction, followed by slow swimming or other type of impaired motion that fails to propel the larvae more than a short distance. The advantage of these assays is that disease progression in the same fish type can be monitored in vivo for several days, and that large numbers of fish can be analyzed in a short time relative to higher vertebrates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Touch-evoked Response and Locomotion Assays to Assess Muscle Performance and Function in Zebrafish

Zebrafish muscle development is highly conserved with mammalian systems making them an excellent model to study muscle function and disease. Many myopathies affecting skeletal muscle function can be quickly and easily assessed in zebrafish over the first few days of embryogenesis. By 24 hr post-fertilization (hpf), wildtype zebrafish spontaneously contract their tail muscles and by 48 hpf, zebr...

متن کامل

Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva.

Zebrafish embryos and larvae have stage-specific patterns of motility or locomotion. Two embryonic structures accomplish this behavior: the central nervous system (CNS) and skeletal muscles. To identify genes that are functionally involved in mediating and controlling different patterns of embryonic and larval motility, we included a simple touch response test in our zebrafish large-scale genet...

متن کامل

Establishing a new animal model for muscle regeneration studies

Skeletal muscle injuries are one of the most common problems in the worldwide which impose a substantial financial burden to the health care system.  Accordingly, it widely accepted that muscle regeneration is a promising approach that can be used to treat muscle injury patients. However, the underlying mechanisms of muscle regeneration have yet to be elucidated. The muscle structure and muscle...

متن کامل

Correction: Zebrafish ambra1a and ambra1b Knockdown Impairs Skeletal Muscle Development

The essential role of autophagy in muscle homeostasis has been clearly demonstrated by phenotype analysis of mice with muscle-specific inactivation of genes encoding autophagy-related proteins. Ambra1 is a key component of the Beclin 1 complex and, in zebrafish, it is encoded by two paralogous genes, ambra1a and ambra1b, both required for normal embryogenesis and larval development. In this stu...

متن کامل

An Electrically Coupled Network of Skeletal Muscle in Zebrafish Distributes Synaptic Current

Fast and slow skeletal muscle types are readily distinguished in larval zebrafish on the basis of differences in location and orientation. Additionally, both muscle types are compact, rendering them amenable to in vivo patch clamp study of synaptic function. Slow muscle mediates rhythmic swimming, but it does so purely through synaptic drive, as these cells are unable to generate action potenti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of visualized experiments : JoVE

دوره 82  شماره 

صفحات  -

تاریخ انتشار 2013